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Partitioning —  
The missing link in building  
fraction knowledge and confidence 

Dianne Siemon 

RMIT University (Bundoora), Vic. 

This paper describes and justifies partitioning as the missing link between the intuitive fraction 

ideas displayed in early childhood and the more generalised ideas needed to work with rational 

number more formally in the middle years of schooling.  

The Middle Years Numeracy Research Project (MYNRP), conducted in a structured 

sample of Victorian Primary and Secondary schools from November 1999 to November 

2000, used relatively open-ended, 'rich assessment' tasks to measure the numeracy 

performance of approximately 7000 students in Years 5 to 9. The tasks valued 

mathematical content knowledge as well as strategic and contextual knowledge and 

generally allowed all learners to make a start.  

The project found that the major factor affecting overall performance was the 

differential performance on tasks concerned with the use of rational number. ‘Hotspots’ 

identified by the analysis of the data indicated that a significant number of students in 

Years 5 to 9 have difficulty with some or all of the following. 

• Explaining and justifying their mathematical thinking; 

• Reading, renaming, ordering, interpreting and applying common fractions, 

particularly those greater than 1; 

• Reading, renaming, ordering, interpreting and applying decimal fractions in 

context; 

• Recognising the applicability of ratio and proportion and justifying this 

mathematically in terms of fractions, percentage or written ratios; 

• Generalising simple number patterns and applying the generalisation to solve a 

related problem; 

• Working with formulae and solving multiple steps problems; 

• Writing mathematically correct statements using recognised symbols and 

conventions; 

• Connecting the results of calculations to the realities of the situation, interpreting 

results in context, and checking the meaningfulness of conclusions; and 

• Maintaining their levels of performance over the transition years from primary to 

secondary school. 



Di Siemon, Paper presented to the  AAMT Virtual Conference, May 2004                   2  

These findings have important implications for the teaching and learning of fractions 

and related number ideas in the middle years of schooling. Once thought to be 

unnecessary apart from further mathematics study, this area of the curriculum is now 

recognised as a key contributor to what it means to be numerate in that it underpins 

the important notion of proportion on which so much of our everyday life depends (see 

Endnote). 

Understanding the problem 

Even before they come to school many young children exhibit an awareness of fraction 

names such as half and quarter. During the first years of schooling, most will be able to 

halve a piece of paper, identify 3 quarters of an orange and talk about parts of 

recognised wholes (eg, blocks of chocolate, pizza, Smarties etc). While to an adult ear, 

this sounds like children understand the relationships inherent in fraction 

representations, for many they are simply using these terms to describe and/or 

enumerate well-known objects. Such children may not be aware of or even attending to 

the key ideas involved in a more general understanding of fractions. That is, that equal 

parts are involved, the number of parts names the parts, and that as the number of 

parts of a given whole are increased, the size of the parts (or shares) get smaller. 

The use of fraction words to name recognised parts of recognised wholes lulls adults 

(teachers and parents) into thinking that many of these children are able to understand 

and use the fraction symbol in the early years of schooling despite the fact that most 

curriculum advice now advocates a delay in the formalisation of fractions. When 

children are introduced to the fraction symbol without a deep understanding of what 

each part of the symbol refers to they are inclined, quite naturally, to view both the 

numerator and the denominator as counting or ‘how many’ numbers. This leads 

ultimately to such misconceptions as “3/12 is bigger than 3/8 because 12 is bigger than 

8”. It also leads to the well-known ‘Freshman’s Error”, that is the tendency to add 

denominators when adding fractions. 

Even when students start to work with practical activities aimed at elaborating the 

meaning of fractional parts in the middle years of primary school, there is no guarantee 

that the ‘equal-ness’ of the parts is necessarily attended to. For instance, although 

chocolate blocks and pizzas are partitioned into equal parts by virtue of their 

manufacture or the method of cutting, this could be overlooked if each piece is treated 

as a one and counted. Similarly, a packet of Smarties may be shared out equally but in 

doing so the relationship of the parts to the whole is no longer obvious. This issue is 

evident in student responses to fraction diagrams as well. For instance, when given the 

following diagram and asked to show 2 fifths, many children will simply count and 

colour without recognising the fractional relationship between the parts and the whole. 

 Shade or colour to show 2/5. 

     

Given a diagram with 6 equal parts and asked to show 2 fifths, some students appeared 

not to notice the number of parts or assumed that the teacher had made a mistake and 
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coloured in 2 parts regardless. A number of students also coloured in 2 parts even when 

they were given a diagram with 5 unequal parts. For anyone who understands fractions 

and how such diagrams are conventionally read, this activity is not a problem, indeed it 

is trivial.  But as teachers we tend to assume that students read the diagrams in the 

same way we do. This is not necessarily so. Initially, students attend to the lines and the 

shapes inherent in fraction diagrams, which is not surprising given their experience of 

working with 2-D shapes over 4 to 5 years of schooling. They are not necessarily 

focussing on area or indeed the relationship between one particular shape and another.  

It is my very strong view that colouring in someone else’s fraction diagram is next to 

useless in scaffolding young student’s thinking about fractions. To understand the 

point of this task, students need to understand how such diagrams are constructed and 

read. But first, examples and non-examples of fraction representations need to be 

explored to ensure that students recognise that equal parts/equal shares are necessary. 

There are many ways to do this, for instance, marking plasticene rolls into equal and 

unequal parts, sharing the packet of Smarties equally and unequally to distinguish 

quarters from 4 parts, and talking about the implications of having the netball court 

divided up into 3 unequal parts. 

Another important initial idea is the distinction between ‘how many’ (the numerator) 

and ‘how much’ (the denominator). This can be supported by distinguishing between 

the number of parts (numeral) and the size of the parts (name) when practical fraction 

examples are first encountered, for example, the Goal Shooter can play in 1 third of the 

netball court, Jason ate 3 quarters of the pizza. Ultimately, students need to 

understand that 3 fifths means not only 3 ‘out of’ 5 equal parts, but 3 divided by 5 and 

that this is a number that exists uniquely on the number line irrespective of how it is 

named (for example, 3/5, 0.6, 60%, or 15/25). However, before this can be realised, 

students first need to understand how parts are formed, named and renamed. 

In the past, this step has been omitted. Teachers and mathematics programs have 

tended to assume that once students can identify fractions from a given diagram, shade 

a given diagram to show a given fraction (nearly always a proper fraction), or find a 

simple part of a given whole (eg, ½, 25%, or 1/3 of 24), they are familiar with fractions 

and ready to proceed to renaming fractions (equivalent fractions) and performing more 

complex operations on fractions. Not so, if we are to prevent students adopting narrow, 

rule-based approaches to fraction manipulation in later years we must revisit how 

fractions are formalised in the middle years, paying careful attention to what I believe 

is the missing link, that is, the connection between fractions and partitive division, and 

thereby to multiplicative thinking more generally. As suggested above, this begins with 

a deeper understanding of how fractions are made, named and renamed – in other 

words, partitioning. 
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Partitioning – the key to formalising fraction ideas in the middle 
years 

By partitioning, I mean not just the experience of physically dividing continuos and 

discrete wholes into equal parts but generalising that experience to enable students to 

create their own fraction diagrams and representations on a number line by applying a 

range of well-known partitioning strategies. Three strategies, applied singly or in 

combination, appear to be sufficient to achieve this, namely, halving, thirding and 

fifthing. 

Halving, thirding and fifthing 

Students do not need to be taught how to halve. This is an intuitive process that most 

students are familiar with. Successive halving yields all of the fractions in the halving 

family, that is, halves, quarters, eighths, sixteenths etc. Students should be encouraged 

to explore halving with different wholes (eg, coloured squares, newspaper, paper 

streamers, plasticine, rope), noting similarities and differences and recording 

observations and generalisations such as: 

As the number of parts increase they get smaller 

Apart from halves and quarters, the number of parts, names the parts, for example, 3 

equal parts, thirds; 5 equal parts, fifths 

Similarly, successive thirding generates all of the fractions in the thirding family, that 

is, thirds, ninths, twenty-sevenths etc and successive fifthing generates all the fractions 

in the fifthing family, that is, fifths, twenty-fifths and so on. By combining strategies 

students can investigate what fractions can be generated, for example, sixths, twelfths 

and eighteenths can be generated by halving and thirding, and tenths, twentieths and 

hundredths can be generated by halving and fifthing.  

Experiments with paper folding (using different paper sizes and shapes as well as paper 

streamers) support the following thinking for the halving strategy. 

 

 

 

 

 

 

 

 

          

 

 

 

Paper 

Models 
Region 

Diagrams 

What did the first fold do? It cut the 

top and bottom edge in half – estimate 

and connect.  

What did the next fold do? It cut the 

halves in half again – estimate and 

connect. 

What did the final fold do? It cut the 

sides in half – estimate and connect. 

2 3 

Number Line Representations 
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For thirding, the thinking strategy can be described as follows. 

 

 

 

 

 

For fifthing, the thinking can be described as follows. 

 

 

 

 

 

Students also need to recognise that for fraction models involving area, two parts may 

look different but have the same relationship to the whole. For example, a square piece 

of paper can be folded in half to form a triangle or a rectangle. Although the halves are 

different shapes, they are both halves of the same whole and are therefore the same in 

at least one important respect, area. To ensure that students are attending to area as 

the relevant dimension, they need to explore different ways of making the same 

fractional parts, for example, ninths can be made by partitioning each side of a 

rectangle into 3 equal parts or by successively partitioning one side into 9 equal parts. 

A well developed capacity to partition regions and lines into any number of equal parts 

supports fraction renaming and justifies the use of multiplication in this process. For 

instance, the recognition that region diagrams may be partitioned on two sides, leads to 

the observation that thirds (3 parts) by halves (2 parts) gives sixths (6 parts). This 

demonstrates the link to the region or area model of multiplication and supports 

further generalisations based on this idea. 

 

   

   

 

In particular, the generalisation supporting fraction renaming:  

Where the number of parts is increased (or decreased) by a certain factor, the number 

of parts required is increased (or decreased) by the same factor. 

This eliminates the need for, and the problems caused by the inappropriate rule, “what 

you do to the top you do to the bottom”, as students have the capacity, through 

partitioning, to identify what is happening to the number of parts. For example, for 2/5 

students can see that as the number of parts IN the whole is increased by a factor of 2 

thirds (3 parts) 

Is 1 third bigger or smaller than 1 half? It’s 

smaller – estimate, leaving space for 2 more 

parts of the same size, connect to show 1 third 

What needs to be done with remaining part? 

Halve it to create 2 more parts the same size 

 

Paper 

Models 

Paper 

Models 

Is 1 fifth bigger or smaller than 1 quarter? It’s smaller – 

estimate and connect to show 1 fifth. 

What needs to be done next? Halve and halve again to 

create 4 more parts the same size 

halves (2 parts) 
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(or doubled) to 10 parts, that the number OF parts of the whole has also increased form 

2 to 4, to show 4/10 

 

 

 

 

Steps in Formalising Fraction Ideas in the Middle Years 

Before undertaking this activity, it is suggested that teachers review a range of familiar 

examples to ensure that students understand the difference between continuous and 

discrete fraction situations, for example, 2 thirds of a length of rope as opposed to 2 

thirds of 24 apples. 

The first three components are essentially review and consolidation 

1. Review initial fraction language and ideas by discussing ‘real-world’, every-day 

examples involving continuous and discrete fractions. 

Continuous 

e.g. 2 and 3 quarter pizzas 

e.g. 2 thirds of the netball court 

Discrete 

e.g. half the grade to art, half to the 

library 

e.g. 2 out of 12 eggs are cracked 

 

2. Practice naming and recording (not symbols) every-day fractions using oral and 

written language, distinguishing between the count (how many) and the part 

(how much) and including mixed as well as proper fractions. 

e.g. 3 fifths, 3 out of 5 equal parts; 

 2 wholes and 3 quarters (fourths) 

 

3. Use practical examples and non-examples to ensure foundation ideas are in 

place, that is, 

• recognition of the necessity for equal parts or fair shares and an 

appreciation of part-whole relationships (eg, half of this whole may be 

different to half of that whole) – fractions are essentially about proportion; 

• recognition of the relationship between the number of equal parts and the 

name of the parts (denominator idea), particularly the use of ordinal 

number names; and 

• an understanding of how equal parts are counted or enumerated 

(numerator idea). 
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4. Introduce the ‘missing link’ — PARTITIONING — to support the making and 

naming of simple common fractions and an awareness that  

the larger the number of parts, the smaller they are. 

Begin by making links to what students already know, for example, their 

knowledge of the numbers 0 to 100 and the respective location of these numbers. 

Rope Activity – you will need a length of rope (at least 3 – 4 metres long), some 

clothes pegs and some cards or paper (quarter A4 is good). Invite 2 students to hold 

the ends of the rope with cards labelled 0 and 100. Distribute cards and pegs to 

other students and ask them to peg the numbers (eg, 3, 19, 48, 67, or 92) on to the 

line. Discuss strategies to demonstrate the practical use of well-known fractions, eg, 

“it’s about half”, “I know that 67% is about 2 thirds of the way”  

Many students have a good sense of percent from their lived experience. This can 

be used as a springboard for partitioning as it helps build a sense of proportion. 

Percent Mentals (Source: Shelley Dole, Catholic Education Office, Melbourne, 

2003)  - Invite students to record answers only to questions such as, 50% of 20, 

50% of 350, 25% of 80, 40% of 150, 33⅓% of 12, 33⅓% of 60, 12½% of 40 … 

Discuss strategies, particularly the use of well-known fraction equivalents. 

Use ‘kindergarten squares’, scrap paper, and paper streamers to investigate 

halving. Explore and teach strategies for thirding and fifthing derived from 

paper folding/rope experiments and estimation based on reasoning about the size 

of the parts (see discussion above).  

Use materials to make and name fractions, exploring what fractions can be made 

by combining partitioning strategies, eg, twelfths can be made by combining 

halving and thirding. 

Poster Activity - Involve groups of students in making posters about particular 

fractions (eg, 3 and 1 quarter, 5 eighths, 2 and 4 fifths, 2 ninths etc). Students make 

fractions using coloured paper squares (white on one side) then write as much as 

they can about their fraction, eg, it’s bigger than 3 but smaller than 3 and a half.  It 

can be renamed in terms of so many halves and quarters, or so many quarters or 

eighths etc. 

 

 

Other representations can be added to the posters as these are acquired, eg, number 

line, real-world example etc. 

 

Use partitioning strategies and thinking derived from paper folding to construct 

fraction diagrams and number line representations. 

e.g. Use thirding strategy to partition the rectangle on the right into thirds 

(remaining quarters white side up) 
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e.g. Partition to show 1 and 5 eighths 

 

                  

 

 

e.g. Use fifthing strategy to draw a diagram showing 2 and 2 fifths 

Think: 1 fifth is smaller than 1 quarter, estimate 1 quarter then 1 fifth. What needs to be done next? 

Halve and halve again to make 4 more parts the same size … repeat and shade as needed 

   

 

 

 

              

 

Fraction Estimation (Source: Maths300, Curriculum Corporation) – this computer 

based resource can be used to consolidate students sense of proportion and their 

partitioning skills. It provides immediate feedback in the form of % accuracy which 

also helps with percent sense . 

 

5.  Introduce (or revisit) the fraction symbol in terms of the ‘out of’ idea for proper 

fractions:  

 

It is likely that many students will have already encountered the fraction symbol 

informally (perhaps even formally), but may not have been exposed to and 

Think: 1 third smaller than 1 

half – estimate and connect 

Halve remaining, larger part 

Paper Model 
Derived Diagram 

0 1 2 

1 and 5 eighths 

Think: Halve and halve again and halve again … 
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understood the idea of partitioning – it is strongly recommended that irrespective 

of whether or not students have met the fraction symbol that they become 

familiar with partitioning as this equips them to make, name and rename 

fractions with understanding. It also underpins a more generalised understanding 

of proper and improper fractions in terms of division. 

e.g. 3/5 not only means 3 ‘out of’ 5 equal parts or 3 fifths, but more generally, 3 

divided by (or shared among) 5 

This leads to the recognition that any number can be partitioned into any number 

of parts, written in fraction notation and simplified as necessary.  

e.g. 36/9 means 36 divided by 9, 4/5 means 4 divided by 5 and so on.  

 

6. Introduce tenths via fraction diagrams and number line representations. Make 

and name ones and tenths using the fifthing and halving partitioning strategies 

(keeping in mind that 0 ones is just one example of ones and tenths).  

 

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

1 and 4 tenths 

14 tenths 

1 
  

4

10
 

1.4 

 

              1.4 

                      

              0                                                                    1                                                                    2 

 

 Introduce decimal recording as a new place-value part. That is,  

(a) establish the new unit, 10 tenths is 1 one, 1 one is 10 tenths (1 tenth of these 

is 1 of those); 

(b) make, name and record ones and tenths, pointing out the need for a marker  

(the decimal point) to show where the ones begin; and 

(c) consolidate understanding through comparing, ordering, counting forwards 

and backwards in place-value parts, and renaming. 
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 Show the connection between common and decimal fractions and percent by 

doing the division and renaming. 

 e.g. 4/5 means 4 divided by 5, this can’t be done unless 4 ones is renamed as 40 

tenths, 40 tenths divided by 5 is 8 tenths or 0.8 or 80 hundredths or 80%. 

e.g. For 3/8, use a calculator to show that 3 divided by 8 is 0.375 or 37.5 

hundredths, 37.5%. This is equivalent to rading to the hundredths place. 

 

7. Extend partitioning techniques to develop understanding that thirds by fourths 

produce twelfths, tenths by tenths give hundredths and so on. 

 

 

 

 

 

 

8. Extend decimal fraction knowledge to hundredths using diagrams (tenths by 

tenths), number line representations and metric relationships (money and MAB 

can lead to misconceptions), introduce percentage as another way of writing 

hundredths. 

 

          

          

          

          

          

          

          

          

          

          

67/100 

67 hundredths 

0 ones 6 tenths 7 hundredths 

0.67 

67 per cent, 67% 

Treat as new  

place-value  

part (as for 

tenths above) 

 

Linear Arithmetic Rods (Source: Department of Science & Mathematics Education, 

The University of Melbourne) – These materials made, from very thin 20 mm 

washers (represent thousandths) and 20 mm plastic conduit tubing (variously cut 

to represent hundredths, tenths and ones), can be used to demonstrate relative 

magnitude of decimal place-value parts. 

 

thirds (3 parts) 

fourths (4 parts) 

Thirds by fourths give 

twelfths (12 parts) 
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Rope Activity – The length of rope referred to earlier can be used to locate common 

and decimal fractions. Try labelling the ends 0 and 2 respectively and have students 

peg on the numbers, ¾, 0,8, 1.4, 2/5, and so on. This is enlightening as many 

students insist that ¾ is located 3 quarters of the length of the rope. 

 

Target Practice – You need 4 ten-sided dice per group of up to 6 students. Target 

numbers can be written on the board or on a worksheet. Students take it in turns to 

throw all 4 dice. The object is to use 3 of the digits to make a number as close to the 

target number as possible. Target numbers can be varied to include whole and/or 

decimal numbers. A mental calculation is made to determine  how close the number 

made is to the target number. This repeated a number of times and the results 

summed. The winner is the person with the lowest sum. 

 

9. Explore fraction renaming (equivalent fractions) using paper-folding, diagrams, 

and games.  

Make a Whole – this is a board game using a fraction wall (1 one, halves, thirds etc up to 

fifteenths), a set of numbered cards to 10 and a set of fraction names (halves, thirds, 

quarters etc). Cards a turned face down and each student (or pair of students) takes it in 

turns to turn over 1 number card (4) and 1 fraction name (thirds). This amount is 

outlined/shaded on the fraction wall as appropriate. Where thirds are already shaded, the 

turn can still be taken if an equivalent fraction can be found and shaded (this might involve 

more than one row of the fraction row) 

 

 Establish the generalisation that if the number of parts (denominator) increases 

by a certain factor then the number of parts required (numerator) increases by 

the same factor (see earlier discussion). 

 

10. Introduce thousandths in terms of metric relationships. Rename measures 

(grams to kilograms etc). Use partitioning strategies to show where decimals live. 

In particular, emphasis the relationship, 1 tenth of these is 1 of those. 

e.g. 4.376 lives between 4 and 5… partition into tenths… it lives between 4.3 and 

4.4… apply metaphor of a magnifying glass to ‘stretch’ out line between 4.3 

and 4.4, partition into ten parts to show hundredths… it lives between 4.37 

and 4.38… repeat process to show thousandths and identify where 4.376 

lives. 

 

The concepts associated with fractions and fraction recording need ultimately to be 

extended to rates and ratios. It is beyond the scope of this paper to explore this in detail 

but these build on the ‘for each’ or Cartesian product idea of multiplication, for 

example, 60 km/hour, $1.75/kg. The idea of ‘for each’ can be illustrated by partitioning, 
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for instance, having ‘thirded’ a piece of paper then halved it, it can be pointed out that 

for each third there are now 2 additional parts … 3 by 2 parts, giving 6 parts or sixths. 

 

 

Difficulties experienced with rates and ratios are more likely to be the result of naïve 

views of multiplication and/or lack of understandings about how fractions are made, 

named and renamed than it is with these notions per se.  

 

Operations involving decimals  

The addition and subtraction of decimals and simple fractions can be introduced once 

these numbers are well understood in their symbolic form starting with simple, like 

fractions, ones and tenths and related fractions. Recording should build on previous 

recording and support place-value ideas. It needs to be remembered that the only 

reason, this is done to consolidate fraction renaming. Written recording should not 

need to be taught – it should be obvious. If not, don’t do it! 

e.g.                4 fifths         2.3               1 ½           

              - 2 fifths                               +  4.8                               + 3 ¾    

 

At this stage, no formal process should be used to rename fractions. Related fractions 

should be renamed mentally based on well-known equivalences, for example, 

4 fifths take 2 fifths is 1 

fifth. Record 

3 tenths and 8 tenths, 11 

tenths or 1 and 1 tenth. 

Record the tenths with 

the tenths and the 1 with 

the ones.  7 ones 

altogether 

½ and ¾? Rename ½ as 

2/4, 2 quarters and 3 

quarters is 5 quarters or 1 

and ¼. Record the parts 

with the parts and the 1 

with the ones. 5 ones 

altogether 

 

Later on, once the generalisation for fraction renaming is well understood, more 

complex examples can be introduced such as, 

4.26  
5

3

1
 

+ 7.38  –3
  
5

8
 

 

In this case, decimal addition (and subtraction) is fairly consistent with what has gone 

on before but the subtraction (or addition) of unlike fractions requires renaming and, 

in this case, decomposition of 1 one for 24/24. 
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e.g. 1/3 take 5/8? No, need to rename as like fractions [Think: eighths by thirds, twenty-

fourths. Is there anything simpler? No, rename as twenty-fourths].  

3 parts increased by a factor of 8, so 1/3 = 8/24 

9 parts increased by a factor of 3, so 5/8 = 15/24 

8/24 take 15/24? No, need to trade 1 one for 24/24 

32/24 take 15/24? Yes, 17/24. Record with parts 

4 take 3 is 1 

 

In my view, we do not need to dwell on these types of written calculations. They should 

only be introduced once students have a very firm grasp of what the fraction symbol 

means, and how fractions  are made, named and renamed. If this is a problem – don’t 

do it! 

The same applies to the multiplication and division of fractions – if you need an answer 

to any calculation for the purposes of solving a problem – USE A CALCULATOR. The 

only reason, written solutions are pursued is to emphasise the way in which operations 

work with various numbers and to develop conventions of mathematical literacy – still 

important even in this day and age as we need to be able to communicate what we are 

doing and why in a way that convinces others.  

The multiplication and division of decimal fractions is fairly straightforward provided 

the appropriate concepts are understood. In this case, the area idea for multiplication 

and the partition idea for division (see Booker et al, 2003 for an elaboration of these 

ideas). 

e.g.  34.6 x 7 can be supported by a Number Expander 

 

 

                                                                                      x    7 

 

e.g.  4.3 x 2.7 can be represented as 43 tenths by 27 tenths and treated as for 

whole number (to arrive at 1161). Tenths by tenths are hundredths so the product 

is 1161 hundredths or 11.61. This is far preferable to the meaningless rule, “if there 

are 2 numbers after the decimal point in the question, then there will be 2 

numbers after the decimal point in the answer”.  

One further issue – when multiplying or dividing decimal fractions by powers of 10, the 

decimal point does not move. It lives between the ones and tenths – it is the digits that 

move. Taking decimal points on a jumping journey is a major source of students errors 

in relation to decimal operations and decimal place-value 

e.g.  For 7.329 x 100, only have to think that 7 ones become 7 hundreds 

           4          32/24 

    5  1/3 8/24 

   -  3 5/8  15/24 

4 17/24 

    

3 4 6 
tens ones tenths 

    7.329 

732.9 
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Partitioning has already introduced students to multiplication of fraction by fractions 

informally. Students can work with fraction diagrams that they create themselves to 

prompt the generalisation that applies for the multiplication of proper fractions, that is,  

that the parts (denominators) multiply to give the new part and the number of parts 

(numerators) multiply to indicate how many of the new parts are required 

Partitioning builds on ‘region’ and ‘area’ models of multiplication. This leads to the ‘by’ 

or ‘for each’ idea and, more generally, the factor.factor.product view of multiplication 

and division which regards multiplication and division as inverse operations – this is 

the idea needed to support all further work in this area and algebra.   

e.g. The partitioning idea sees ¾ x 2/3 in terms of region or area, for instance if 

the following diagram represents 1 whole, the product can be thought of in terms 

of thirds by quarters … twelfths. 3 parts by 2 parts, 6 parts … 6/12 or 1/2 

 

 

 

 

 

 

Having said this, it needs to be noted that there are other ways of representing ¾ x 2/3. 

For instance, it is possible, indeed, it is common practice in many texts, to use the more 

naïve ‘fraction as operator’ or the ‘of’ idea to justify the multiplication of a proper 

fraction by a proper fraction. This can be shown in the following diagram. 

 

e.g. ¾ x 2/3 

 

 

 

This representation of the ‘of’ idea only works for the multiplication of proper fractions, 

where the intersection remains a fraction of the original whole. 

By contrast, the ‘area’ idea derived from partitioning supports all forms of fraction 

multiplication. 

         

         

         
         
         

 

In this case, one of the fractions, generally the second, is 

shown (2/3), then the remaining side is partitioned into 

quarters and 3 are shaded. As this necessarily partitions the 

2 thirds into quarters, the intersection shows ¾  of 2/3  

…The problem with this is that the focus is on the number 

of parts  not how or why the new parts are created 

In this case, each side is partitioned to show 2/3 and 

¾ respectively, the product is the intersection of 

these two lengths. The area is named by the parts 

produced, that is, thirds by quarters … twelfths. 

That is, ¾ by 2/3 is 6/12 …  

What do you notice? Why? 

3 quarters 

2 thirds 

e.g. 2⅔   x 1⅝ 
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This is consistent with the area model used for whole number multiplication, where 

students learnt that each place-value part is multiplied by each other place-value part, 

for example, 45 x 23 can be modelled by MAB to show that the product is the area 

formed by (4 tens x 2 tens) + (4 tens x 3 ones) + (5 ones by 2 tens) + (5 ones by 3 ones).  

This leads to the idea that, in this case, the mixed fraction multiplication is just as easily 

carried out as with renaming done mentally. Again, this would only be done where 

students had the necessary pre-requisite knowledge, it be obvious – if not, don’t do it.   

(2 x 1) + (2 x ⅝) + (⅓  x 1) + (⅓ x ⅝)  = 2 + 1¼  + ⅓  +  5/24    

      = 3 + 6/24   + 8/24   + 5/24    

                        = 3  19/24         

 

Division of a fraction by another fraction has always caused problems with many 

teachers resorting to the rule “just invert and multiply – it works”.  The division of a 

fraction by another fraction is largely problematic because students do not have access 

to the more sophisticated ideas of multiplication upon which it depends, in particular 

the ‘factor.factor.product’ idea. While quotation division (asking ‘how many in’) makes 

some sense for a whole number divided by a fraction and simple fraction situations, 

this does not generalise to all cases of fraction division. 

e.g. for  6 ÷ ½ translated as ‘how many halves in 6’, it is relatively easy to see that 

there are 12 halves in 6. 

e.g. For 1 ½ ÷ ¼, it is also relatively easy to count quarters to get, 5 quarters. 

 

A much better way of doing this is to build on partition division which asks ‘how many 

in each part’ as opposed to ‘how many groups in’ (see Booker et al, 2003 for a detailed 

discussion of the difference between these two ideas). The partition idea leads naturally 

to fractions (hence, partitioning) and to the idea of ‘factor.factor.product’.  It also leads 

to the strategy ‘think of multiplication’, for instance, 24 shared among 4 or partitioned 

into 4 equal parts gives rise to the thinking, “4 what’s are 24?”. 

This supports fraction division as well, for instance, ¾ ÷ ⅔ can be thought about as  “⅔ 

by what is ¾?”. This gives rise to the equation,  ⅔ x = ¾ which can be solved by 

multiplying ¾ by 3/2. Which justifies (and is the source of) the rule, ‘invert and 

multiply’. Of course students would not be doing this if they did not have access to the 

appropriate strategies for solving equations such as this which require an 

understanding of multiplication and division in terms of ‘factor-factor-product’. But if 

they haven’t got access to these ideas and strategies, they shouldn’t be attempting 

fraction division or algebra in the first place.  

 

Postscript: I’m beginning to think that all division from Day 1 should be recorded as a 

fraction, but perhaps that’s a discussion for another day! 
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End Note - Why fractions? 

It is no longer acceptable that students leave school without the foundation knowledge, 

skills and dispositions they need to be able to function effectively in modern society. 

This includes the ability to read, interpret and act upon a much larger range of texts 

than those encountered by previous generations. In an analysis of commonly 

encountered texts, that is, texts that at least one member of a household might need to, 

want to, or have to deal with on a daily, weekly, monthly or annual basis, approximately 

90% were identified as requiring some degree of quantitative and/or spatial reasoning. 

Of these texts, the mathematical knowledge most commonly required was some 

understanding of rational number and proportional reasoning, that is, fractions, 

decimals, percent, ratio and proportion. An ability to deal with a wide range of texts 

requires more than literacy – it requires a genuine understanding of key underpinning 

ideas and a capacity to read, interpret and use a variety of symbolic, spatial and 

quantitative texts. This capacity is a core component of what it means to be numerate. 
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Prompting Questions 

 

What can we do with the kids in Years 7 and 8 that just don’t get it? They can work with 

pizzas but when it comes to working with fractions more formally they give up.  

Why do students add denominators? 

Some students seem to think that the bigger the denominator, the bigger the fraction, 

how can I prevent this? 

Tenths seem to be OK, but getting students to deal with decimals beyond that is a real 

effort, why? 

What can I use to help build a sense of proportion? 

For fraction division, I just teach them to ‘invert and multiply’, what’s wrong with that? 


